光电编码器基础
1.1 概述
光电编码器是一种集光、机、电为一体的数字化检测装置,它具有分辨率高、精度高、结构简单、体积小、使用可靠、易于维护、性价比高等优点。近10几年来,发展为一种成熟的多规格、高性能的系列工业化产品,在数控机床、机器人、雷达、光电经纬仪、地面指挥仪、高精度闭环调速系统、伺服系统等诸多领域中得到了广泛的应用。光电编码器可以定义为:一种通过光电转换,将输至轴上的机械、几何位移量转换成脉冲或数字量的传感器,它主要用于速度或位置(角度)的检测。典型的光电编码器由码盘(Disk)、检测光栅(Mask)、光电转换电路(包括光源、光敏器件、信号转换电路)、机械部件等组成。
一般来说,根据光电编码器产生脉冲的方式不同,可以分为增量式、绝对式以及复合式三大类。按编码器运动部件的运动方式来分,可以分为旋转式和直线式两种。由于直线式运动可以借助机械连接转变为旋转式运动,反之亦然。因此,只有在那些结构形式和运动方式都有利于使用直线式光电编码器的场合才予使用。旋转式光电编码器容易做成全封闭型式,易于实现小型化,传感长度较长,具有较长的环境适用能力,因而在实际工业生产中得到广泛的应用,在本书中主要针对旋转式光电编码器,如不特别说明,所提到的光电编码器则指旋转式光电编码器。
1.2 增量式光电编码器
1.2.1 原理及其结构
增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B两相互差 电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。标志脉冲通常用来指示机械位置或对积累量清零。
增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成,如图1-1所示。码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期;检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。它们的节距和
码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差 电度角。当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差 电度角的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息。增量式光电编码器输出信号波形如图1-2所示。
增量式光电编码器的优点是:原理构造简单、易于实现;机械平均寿命长,可达到几万小时以上;分辨率高;抗干扰能力较强,信号传输距离较长,可靠性较高。其缺点是它无法直接读出转动轴的绝对位置信息。
1.2.2 基本技术规格
在增量式光电编码器的使用过程中,对于其技术规格通常会提出不同的要求,其中最关键的就是它的分辨率、精度、输出信号的稳定性、响应频率、信号输出形式。
(1)分辨率
光电编码器的分辨率是以编码器轴转动一周所产生的输出信号基本周期数来表示的,即脉冲数/转(PPR)。码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多,编码器的分辨率就越高。在工业电气传动中,根据不同的应用对象,可选择分辨率通常在500~6000PPR的增量式光电编码器,最高可以达到几万PPR。交流伺服电机控制系统中通常选用分辨率为2500PPR的编码器。此外对光电转换信号进行逻辑处理,可以得到2倍频或4倍频的脉冲信号,从而进一步提高分辨率。
(2)精度
增量式光电编码器的精度与分辨率完全无关,这是两个不同的概念。精度是一种度量在所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力。精度通常用角度、角分或角秒来表示。编码器的精度与码盘透光缝隙的加工质量、码盘的机械旋转情况的制造精度因素有关,也与安装技术有关。
(3)输出信号的稳定性
编码器输出信号的稳定性是指在实际运行条件下,保持规定精度的能力。影响编码器输出信号稳定性的主要因素是温度对电子器件造成的漂移、外界加于编码器的变形力以及光源特性的变化。由于受到温度和电源变化的影响,编码器的电子电路不能保持规定的输出特性,在设计和使用中都要给予充分考虑。
(4)响应频率
编码器输出的响应频率取决于光电检测器件、电子处理线路的响应速度。当编码器高速旋转时,如果其分辨率很高,那么编码器输出的信号频率将会很高。如果光电检测器件和电子线路元器件的工作速度与之不能相适应,就有可能使输出波形严重畸变,甚至产生丢失脉冲的现象。这样输出信号就不能准确反映轴的位置信息。所以,每一种编码器在其分辨率一定的情况下,它的最高转速也是一定的,即它的响应频率是受限制的。编码器的最大响应频率、分辨率和最高转速之间的关系如公式(1-1)所示。
(1-1)
其中, 为最大响应频率、 为最高转速、N为分辨率。
(5)信号输出形式
在大多数情况下,直接从编码器的光电检测器件获取的信号电平较低,波形也不规则,还不能适应于控制、信号处理和远距离传输的要求。所以,在编码器内还必须将此信号放大、整形。经过处理的输出信号一般近似于正弦波或矩形波。由于矩形波输出信号容易进行数字处理,所以这种输出信号在定位控制中得到广泛的应用。采用正弦波输出信号时基本消除了定位停止时的振荡现象,并且容易通过电子内插方法,以较低的成本得到较高的分辨率。
增量式光电编码器的信号输出形式有:集电极开路输出(Open Collector)、电压输出(Voltage Output)、线驱动输出(Line Driver)、互补型输出(Complemental Output)和推挽式输出(Totem Pole)。
集电极开路输出 这种输出方式通过使用编码器输出侧的NPN晶体管,将晶体管的发射极引出端子连接至0V,断开集电极与+Vcc的端子并把集电极作为输出端。在编码器供电电压和信号接受装置的电压不一致的情况下,建议使用这种类型的输出电路。输出电路如图1-3所示。主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等。
电压输出 这种输出方式通过使用编码器输出侧的NPN晶体管,将晶体管的发射极引出端子连接至0V,集电极端子与+Vcc和负载电阻相连,并作为输出端。在编码器供电电压和信号接受装置的电压一致的情况下,建议使用这种类型的输出电路。输出电路如图1-4所示。主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等。
线驱动输出 这种输出方式将线驱动专用IC芯片(26LS31)用于编码器输出电路,由于它具有高速响应和良好的抗噪声性能,使得线驱动输出适宜长距离传输。输出电路如图1-5所示。主要应用领域有伺服电机、机器人、数控加工机械等。
互补型输出 这种输出方式由上下两个分别为PNP型和NPN型的三极管组成,当其中一个三极管导通时,另外一个三极管则关断。这种输出形式具有高输入阻抗和低输出阻抗,因此在低阻抗情况下它也可以提供大范围的电源。由于输入、输出信号相位相同且频率范围宽,因此它适合长距离传输。输出电路如图1-6所示。主要应用于电梯领域或专用领域。
推挽式输出 这种输出方式由上下两个NPN型的三极管组成,当其中一个三极管导通时,另外一个三极管则关断。电流通过输出侧的两个晶体管向两个方向流入,并始终输出电流。因此它阻抗低,而且不太受噪声和变形波的影响。输出电路如图1-7所示。主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等。